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SIMPLE ELASTICITY MODELING AND FAILURE PREDICTION FOR

COMPOSITE FLEXBEAMS

Abstract

A simple 2D boundary element analysis, suitable for developing cost effective models for

tapered composite laminates, is presented. Constant stress and displacement elements are

used. Closed-form fundamental solutions are derived. Numerical results are provided for

several configurations to illustrate the accuracy of the model.

Introduction

One of the major sources of failure in composite structures is delamination initiating from

stress concentration sites such as ply drop or a matrix crack. In order to design a damage

tolerant structure, many parameters affecting delamination must be considered. A

stacking sequence with the most favorable distribution of interlaminar stresses under

specified loading, needs to be selected out of a large number of candidate configurations.

A significant component to achieving affordable rotorcraft composite structures is the

development of simple and accurate analytical tools that provide trend information at the

preliminary design stages.

The analysis of composite structures generally requires numerical modeling. The cost

associated with conventional finite element simulations of a large number of candidate

configurations results in a need for developing alternative cost effective models. The

available engineering beam and shell theories do not allow for a reliable prediction of all

key parameters such as the peel stress due to simplifying assumptions restricting the

stress or strain state. Existing approximate elasticity closed-form models _ do not

accommodate laminates with tapered geometry. One important application of such

laminates is composite flexbeams in hingeless and bearingless rotors. During flight, the

rotor hub arm experiences centrifugal loads as well as bending in the flapping-flexure

region 2. In order to accommodate this bending, the stiffness of the flapping-flexure

region is changed by varying the thickness of the hub arm. This thickness change is

accomplished by dropping internal plies in that region. A 2D finite element analysis of

flexbeam laminates 2 requires a mesh with several thousand elements and associated

number of degrees of freedom of order 104.

Cost effective models for elastic analysis of tapered composite structures can be

developed by applying boundary element techniques. The boundary integral equations

represent a closed-form model that does not require additional differentiation to obtain a

solution. Therefore, a coarse mesh and low order elements resulting in small systems of

linear algebraic equations are expected to provide accurate predictions. Boundary

element modeling involves discretization of the domain boundary only. This reduces the

model size compared to an interior discretization at the same level. On the other hand,

singular kernel functions have to be used to solve the boundary integral equations.

However, this singular formulation is consistent with singular stress fields at the crack

front of dissimilar ply interface.
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The first boundary element solutions for plane homogeneousorthotropic elasticity
problemsareprovidedin References3 and4. An analysisfor laminatedcompositesin a
stateof strain independentof the longitudinaldirectionwaspublishedin Ref. 5 for the
caseof axial extensionandin Ref. 6 for the bendingcase. Only laminateswith straight
edgeswereconsidered.A meshwith 44 elementsperply wassufficientto reacha good
agreementwith classical finite difference and finite element predictions for the
interlaminarstresses.However,neitherof thesetwo referencesprovides the order of
boundaryelementsused.

The main purpose of this work is to develop a simple methodology for applying boundary

element modeling to rotorcraft composite structures. A 2D boundary integral formulation

for anisotropic elasticity problems is provided. The constant stress and displacement

elements, the simplest order element to program, are used. The model simplicity and

accuracy are first illustrated for a cross sectional analysis of an orthotropic flat laminate

subjected to axial extension. Results for a plane analysis of generic tapered

configurations are discussed subsequently.

Analysis

In this section, details of a 2D boundary element elasticity modeling of composites are

presented. The basic relationships are derived for a laminate exhibiting a plane

deformation state. The cross sectional analysis of laminated beams undergoing a 3D

strain state independent of the longitudinal direction is similar but more algebraically

involved and, therefore, only briefly outlined.

Boundary_ Integral Equations

Consider a 2D elastic domain represented by a longitudinal section of a laminate of an

arbitrary geometry, undergoing a plane deformation state. Assume that the laminate

consists of sections of homogeneous material such as differently oriented plies or resin

pockets. A homogeneous anisotropic material sector will be generally referred to as a

sublaminate --a ply or a group of plies treated as a single unit with effective properties, in

the sequel. Equivalent plane elastic properties ofa sublaminate can be obtained based on

the classical lamination theory 7 and stiffness or compliance tensor transformation

relations. The appropriate boundary conditions at the laminate boundary and the material

interfaces are specified.

For a sublaminate, the engineering strain-displacement relationships for small

displacement are

_'_ = u,_, _'_ = v,y y,_, = u y + v,x (1)

where x and y are Cartesian coordinates and subscript commas denote partial derivatives.

The following compatibility equations can be obtained from eqns (I)
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e_,_, + c_,_ - y_,_y = 0 (2)

The stress components satisfy the following equilibrium equations

cr=,_+a_,, = 0 c%,_+ %,,y = 0 (3)

and the constitutive relations are

Is,s,2s Tjo l
_/xy LSI6 S26 S66.JLO'x.vJ

o"= Ct: C = S -j (4)

where S and C denote the compliance and stiffness matrices, respectively.

In order to obtain the governing integral equations, consider the following two

equilibrium states: the true state

o_=Cel (5)

of a sublaminate subjected to the actual boundary conditions and a known fundamental
state

oz = C_2 (6)

of a sublaminate of the same material and geometry but subjected to a different set of

boundary conditions. The only restriction is that the fundamental state has to be singular.

This condition ensures a non-trivial solution. The fundamental state could be defined by

"cutting" the ply from a half-plane or another simple domain subjected to a concentrated

force with the point of load application being on the sublaminate boundary. Two

independent fundamental states associated with the force vector components could be
obtained.

The following identity can be obtained from eqns (5) and (6)

f_ f_

where f2 is the sublaminate area. Substitute eqns (1) into eqn (7), integrate by parts and

use eqns (3) to obtain

ft_u,dl = ft_u,dl (8)
F F



where F is the sublaminate boundary and

tj : uj =
[tyi Vi

i = 1,2 (9)

are the traction and displacement vectors. Equation (8) expresses the reciprocity

theorem. The simplest possible boundary element model, based on this equation, is

developed in the following.

Discretize the ply boundary into a number of segments or elements and assume constant

tl and ul in each element. Select the middle point of an element as the node at which the

concentrated load vector is applied to construct the fundamental solution. For each node

i, two linear algebraic equations can be obtained from eqn (8)

tx u _u_2,dl + ty u _v_2fll-uu _t_x2fll-vu [t_,2fll=O

r, r_ r, rj

txu _ugfll + ty u _v_id'-u u _t:2_dl-v u _t,2.z,dl =0

r, r, r, r,

i,j = 1,...,N_ (10)

where Nk is the number of elements, and the superscript indicates the first and second

fundamental solutions. Summation over the repeated index j is assumed. The total
M

number of equations is 2]_--'N_ where M is the number of sublaminates. The Cauchy
k=l

principal value of the integrals is implied where necessary.

There are four parameters per element to be determined: two displacements and two

traction vector components. However, two of them are specified if the element belongs

to the laminate boundary and four continuity conditions have to be satisfied at the

sublaminate interfaces. Thus, the boundary conditions reduce the number of unknowns

to the number of equations.

It is worth noting that if the tractions and displacements are assumed to change within an

element according to selected shape functions, eqns (10) have to be appropriately

modified, and discontinuity points such as comers and crack fronts need to be accounted

for in the analysis.

For a laminated beam subjected to a 3D state of strain independent of the longitudinal

direction, the cross sectional boundary integral equations can be obtained as follows.

Let Cartesian coordinates x and y be in the cross section plane and z be the longitudinal

axis. Denote the constant axial strain, bending curvatures and twist rate of the laminate

by eo, _q, _c2 and 0. Assume these four parameters to be zero in a fundamental state.

Using the same procedure as for the plane deformation, the following reciprocity

relationship similar to eqn (8) can be derived



1"2 fl

(11)

where the traction and displacement vectors now have three components. The right-hand

side of eqn (11) can easily be transformed to a boundary integral. For an orthotropic

laminate subjected to axial extension only, with x, y and z coordinate axes parallel to the

principal material directions 1, 2 and 3, respectively, the boundary element equations

similar to eqns (10) are

in,j,+,,,,iv,j,-,,?j-v,,
r, r, r, r,

= go I-c=,v'2, dx + c,,u_,dy
F

r, b r. L

= So - c_,_,.&+e,,u_,.dy
r

i,j = 1,..., N k (12)

where c o are components of the sublaminate stiffness matrix

C_

ell c12 c13

c12 c22 c23

e13 c23 c33

0

c44 0 0

0 c55 0

0 0 C66

(13)

Fundamental Solutions

Define the stress function identically satisfying the equilibrium equations (3) as

o'= = F>,, cry, = F,_ c%, = -F.y (14)

Substitute the constitutive relations (4), expressed in terms of the stress function (14),

into the compatibility equation (2) to obtain the following differential equation

s,,F,,,,-2s,_<_,, +(2s,_+s_,)F,:,,,,-2s,_<=,,+ s_<_=,= o (15)

The roots of the characteristic equation
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SII_ 4 -- 2SI6_ 3 + (2s12 + $66)_ 2 - 2s26 _ + $22 = 0 (16)

are complex 8

_,=21+i/a I _2=_+i/a2 _3=_ _4=_ (17)

where the roots _:3 and _:4 are complex conjugate to _:_ and _x2 . Introduce new variables

x i =x+2y y, =t.t,y i=1,2 (18)

The differential equation (15) can be simplified to

02 02 7V 02 02 7
-Z-T+ F 0 (19)o ,JLax 

If the characteristic roots x

materials, F is

equation, that is

and ¢2 are not repeated, which is the case for anisotropic

a combination of two functions, each being a solution of Laplace's

F= FI + F2 ,

O2F, O2F_
Ox_ _-TT = 00y,

i= 1,2 (20)

are analytic functions.

where

O0k = dFk (21)
dzk

is also an analytic function Of Zk. The general solution for any plane anisotropic elasticity

problem can be written in the following form s

(_ = (I)I(Xl,Yl) + (I)2(X2, Y2)

¢,(xk,yk)=Pk(Xk,yk)+iQk(xk,yk) k = 1,2

Functions Pk and Q, satisfy the Cauchy-Riemann conditions

(22)

(23)

A harmonic stress function Fk is the real part of an analytic function of the complex

variable z k = x k + iy k . The derivative of this function

The fundamental solution of Laplace's equation for a fixed point is a logarithmic function

of the distance from that point.



_ oO, aQk
= - _ (24)

A fundamental solution for _k can be written as

where

_k = Ck In z k = Ck In pke i_* = Ck In Pk + iCkq_k = Pk + iQk k = 1,2 (25)

Pk = r--=x/x_+ y_ q_k = arctan Y--& (26)
Xk

The methodology for obtaining the constants in eqns (25) is illustrated for the case of an

orthotropic material. In addition to the vanishing coefficients s_6 and s26 in the

compliance matrix (4), the characteristic roots (17) are purely imaginary for a practical

material system. Equations (18) become

x k = x Yk = ,ukY (28)

The following expressions for the displacements and stresses can be derived from eqns

(1), (4), (14), (18), (20)-(24), and (28)

u = plPl + p2P2

v = -q,Q, - q2Q2

2 2
O'xx --_l I l_l,x= --/.12192, x

1 1
Cry_,= -- Ql.y + -- Q2 _,

,u, u:

k = 1,2 (29)

where

p_ = --Sll,U_ + St2 q, = sl2,u _- s2---Z i = 1,2 (30)

The first condition to obtain constants C_ and C2 in eqns (25) is a single-valued vertical

displacement

v(q_) = v(tp + 22r) (31 )
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Thesecondconditionnormalizestheresultanttractionforcein thehorizontaldirectionin
the origin of the coordinatesystem to a half-unit. The resulting

CL = 1 q2 C2 = 1 qr (32)
27r /21q2 - P2q_ 27r /21q2 -/22ql

the vicinity of

expressions are

Another fundamental solution for _k is

Constants C; and C_

displacement

• _ : -C'kilnzk = C'k_o, + iC'k In 1 = Pk" + iQ'k
Pk

k = 1,2 (33)

are obtained based on the conditions of a single-valued horizontal

u(¢) = u(cp + 2n') (34)

and a half-unit resultant traction force in the vertical direction in the vicinity of the origin,

C_'= 1 P2 C; 1 p, (35)
2n p_ - P2 2zr p_ - P2

The resulting expressions are

The expressions for the fundamental solutions are summarized in the following

where

uk = PtPkI + P2Pk2

v* = -qlQkJ - q2Qk2

2 2

a _, = -/2_ Pk_,_-/22 _2,_

1 1
cr.,k = _ Qkl.y + -- Qk 2,y

/21 /22

cr.,, =-s,,,y - 52, 

k = 1,2 (36)

9



s,,=C,, +A

P2_ = C2k arctan Y_
xk

1 q2
CIj=

27; Plq2 -/-/2ql

1 P2
C21 =

2re Pt - P2

Q_k = C_ arctan )'k

C12

x k

1

(37)

The same fundamental solutions can be used for the cross sectional analysis of an

orthotropic laminate subjected to uniform axial extension and bending. The compliance

coefficients have to be replaced by the following parameters

2
S73 Sl 3S23 S23

_11 _" SI1--_ _12 = S12 --_ _22 "_- $22 --_ _66 = $66 (38)

$33 $33 $33

where su are coefficients of the compliance matrix for an orthotropic sublaminate. The

fundamental solutions for the case of general laminates subjected to a 3D strain state

independent of the longitudinal direction are of a similar form as for the plane case. The

boundary value problem is governed by two stress functions 8. The differential equations

are transformed into three Laplace's equations and three fundamental solutions have to be
obtained.

Results

In the following, the boundary element model developed in the previous section is

applied to simple laminate configurations. Numerical results for the interlaminar stresses

are provided.

In order to compare the model predictions with published finite element results, consider

a flat [90/0is graphite�epoxy laminate subjected to axial extension. The laminate cross

section is shown in Fig. 1 and the material properties are provided in Table 1 (Re£ 9). A

quarter of the laminate was modeled due to symmetry. The tractions are assumed zero at

the free edges, the normal displacement and shear stress are set to zero at the symmetry

axes, and the continuity conditions for both displacements and tractions are satisfied at

the ply interface. The boundary is discretized as shown in Fig. 2. In order to implicitly

account for singularities, the nodes are moved at a small distance outside the elements.

The displacements and tractions are assumed constant within an element as mentioned

above. As a consequence, all integrals in eqns (12) can easily be calculated analytically.

The interlaminar stress predictions are compared with results from a hybrid finite element

cross sectional model 9 in Figures 3 and 4. A boundary element mesh that has only 4

elements per ply at the ply interface, with a total of 24 elements and 48 degrees of
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freedom,providesaccuratepredictionsat the nodalpoints. This meshis labeledcoarse
meshin Figures 3 and 4, while the fine meshcorrespondsto 448 elementswith 896
degreesof freedom.

Next, a generictaperedglass/epoxyplaneconfigurationshownin Fig. 5 is considered.
The equivalent plane orthotropic material properties for the ply groups are provided in

Table 2 (Ref. 2). The thick end is clamped and a uniform axial displacement is applied at

a two tapered length distance from this end. One half of the laminate is modeled due to

symmetry. The displacements are zero at the clamped end, the tractions are zero at the

upper surface, and the vertical displacement and the shear stress are zero at the midplane.

The interlaminar traction predictions at the 0/45 interface are compared with results from

ABAQUS finite element analysis in Figures 6 and 7. The ABAQUS models are

generated using constant plane stress four-node reduced integration continuum elements

(CPS4R). The finite element mesh sizes are 480 elements with 1098 variables that

include the degrees of freedom and the Lagrange multipliers, and 7712 elements with

15972 variables. The boundary element model sizes are 72 elements with 144 degrees of

freedom, and 448 elements with 896 degrees of freedom. The stress discontinuity

corresponds to the intersection between the uniform and the tapered sections of the

laminate. A boundary element mesh with 16 elements per ply at the ply interface,

resulting in a total of 72 elements with 144 degrees of freedom, is sufficient for accurate

predictions. The model size can be considerably reduced if a graded mesh is used.

Conclusion

A 2D boundary element analysis for composite laminates was presented in this work.

The constant stress and displacement models, corresponding to the simplest element, with

a small number of degrees of freedom resulted in accurate predictions of the interlaminar

stresses for the configurations considered. The results presented in this work suggest that

the boundary element method could become a basis for developing simple and accurate

models for the elasticity and fracture mechanics analysis of composite structures of

arbitrary geometry. The accuracy of the boundary element predictions at the contact

surfaces could result in the development of local models for calculating the strain energy

release rate components, which will be incorporated in the finite element modeling tools.

To this end, a basis for simple and accurate plane and cross sectional boundary element

modeling of composites has been established. The challenge comes with the

development of closed form fundamental solutions for a 3D analysis of anisotropic
structures. Generalization of the Stroh formalism could result in such solutions and is a

subject of future work.
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Table 1. Properties of graphite/epoxy material system 9

E33 = 20.0 Msi (137.9 GPa)

Etl = E22 = 2.1 Msi (14.5 GPa)

GI3 = G23 = G12 = 0.85 Msi (5.9 GPa)

v31 = v32 = vl2 = 0.21

Table 2. Orthotropic material properties 2

Material Layup El t, GPa E22, GPa Gl2, GPa vl2

47.6 12.6 4.81 0.28S2/E7T1 tape [0]m

E-glass/E7T1-2 fabric [+45]n 25.3 24.1 4.56 0.153

Y

2h

_ <------_2b=8h _

_____>
x

Fig. 1. Flat laminate configuration
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Fig. 2. Boundary discretization
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Fig. 3. Interlaminar shear stress predictions for fiat laminate
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Fig. 7. Interlaminar surface traction predictions for tapered laminate
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